NLP: Advanced Architectures

Yuanzhi Zhu SiDNN

26/Apr/2022

- Transformer
- GPT
- BERT

- Transformer
- GPT
- BERT

NLP: Seq2Seq Problems

Seq2Seq Problems: More than word embeddings

Machine Translation

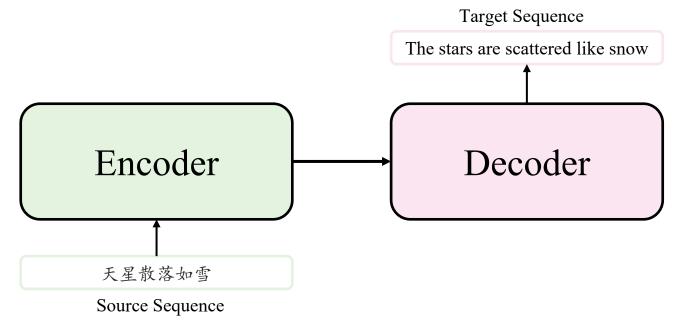
天星散落如雪 The stars in the sky are scattered like snow

Question Answering

How are you? I am good

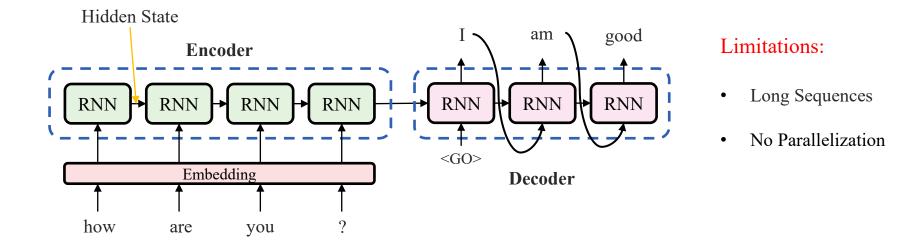
NLP: Seq2Seq Model

General Encoder Decoder Architecture

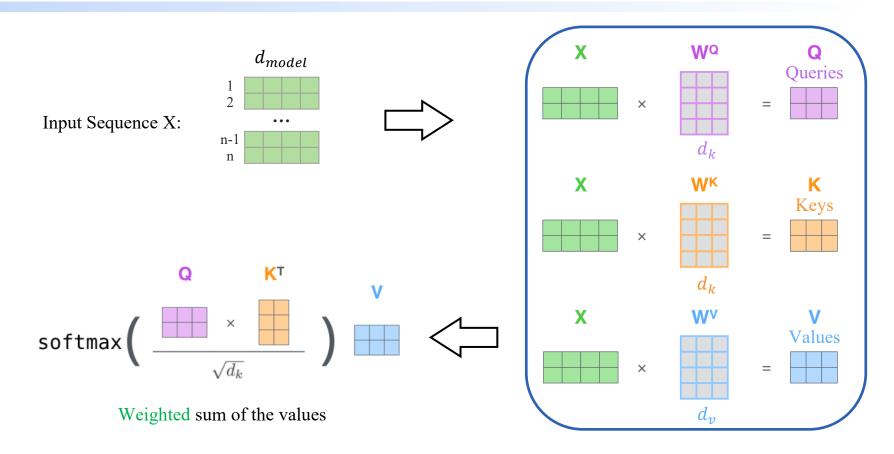


NLP: Seq2Seq Model

RNN Encoder Decoder Architecture

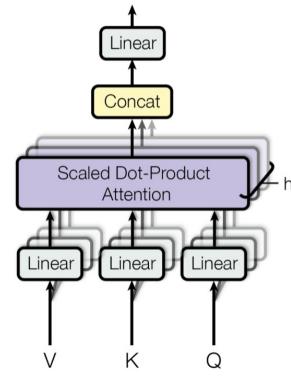


Self-Attention: Better Info Mixer



Multi-head Attention ← Multi-channel CNN

All heads are initialized randomly to learn different attentions

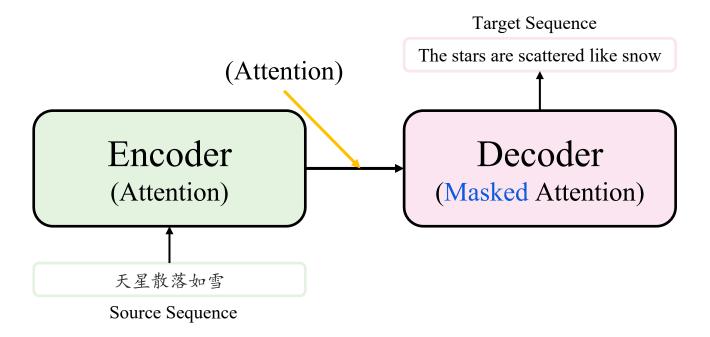


 $\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$

output dimension = $\mathcal{R}^{n \times d_{model}}$

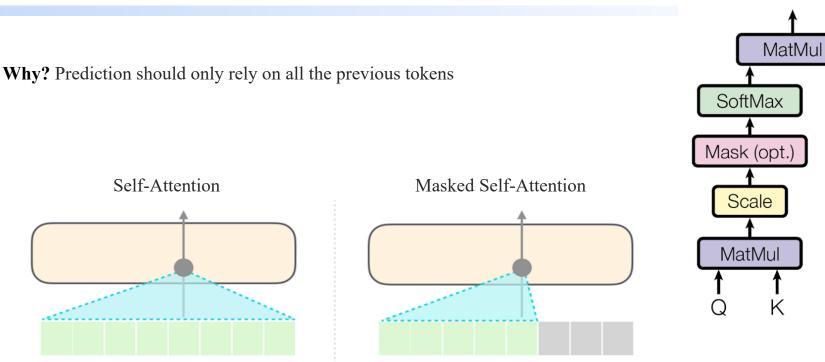
Seq2Seq Model with Attention

Encoder Decoder Architecture Using Attention



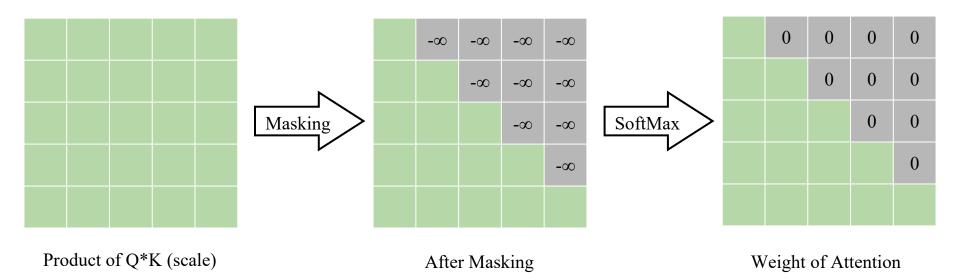
Mask: In Decoder

Scaled Dot-Product Attention

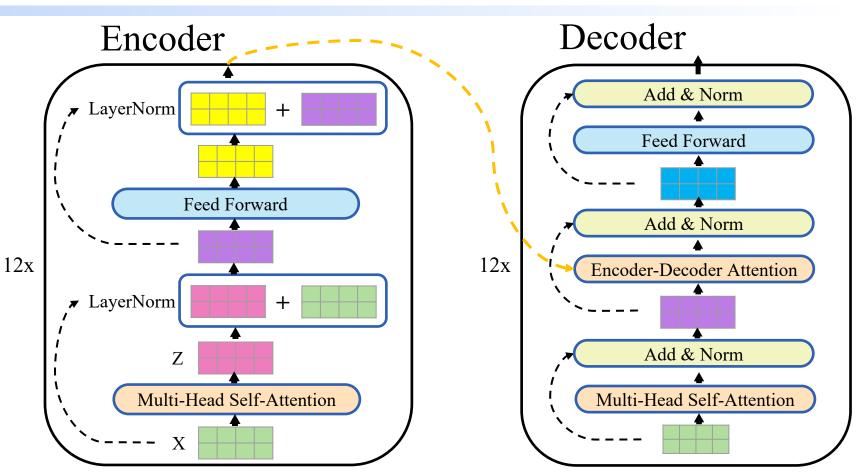


Mask: In Decoder

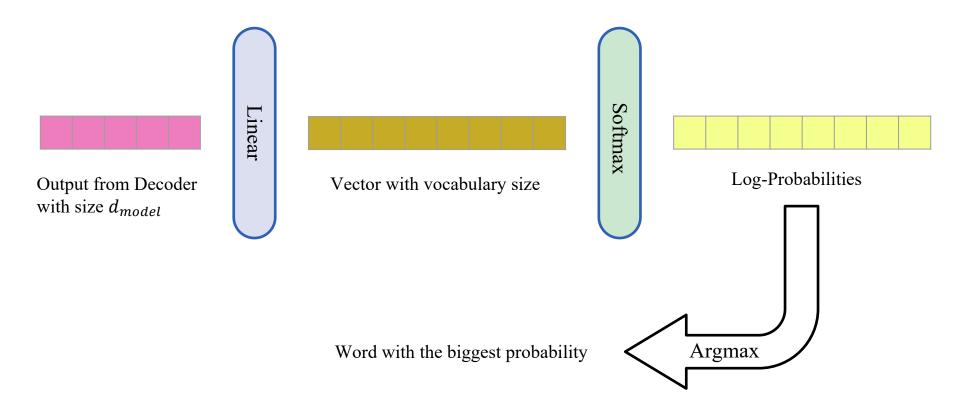
Masked attention



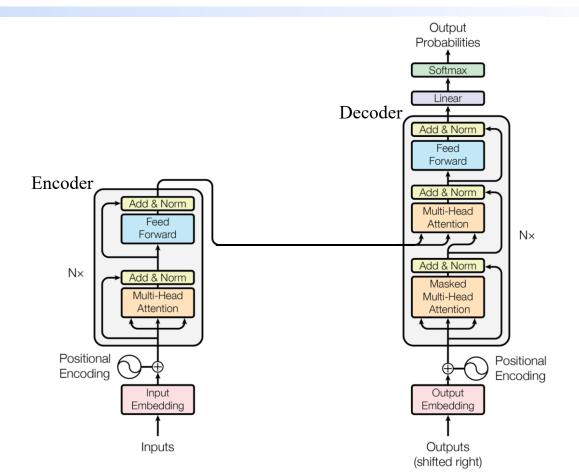
Encoder & Decoder in Detail



The Output Layer: (Language Generation Model)

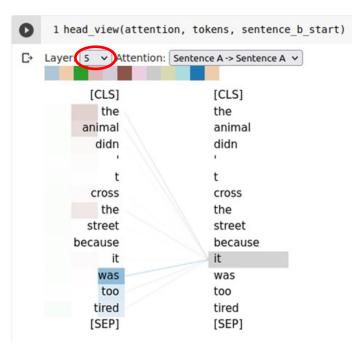


Attention → Transformer

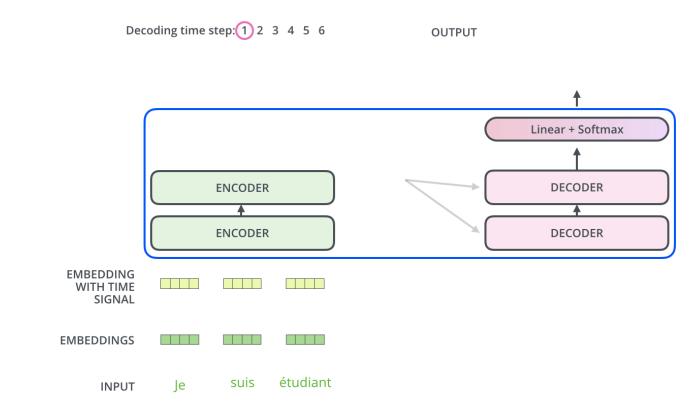


Self-Attention: Example

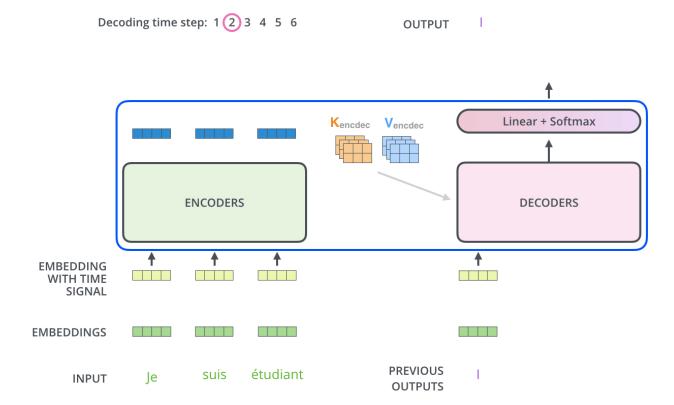
0	1 head_view(attenti	on, tokens, sentence_b_start)
C⇒	Layer • Attention:	Sentence A -> Sentence A 🗸
	[CLS]	[CLS]
	the	the
	animal	animal
	didn	didn
		1
	t	t
	cross	cross
	the	the
	street	street
	because	because
	it	it
	was	was
	too	too
	tired	tired
	[SEP]	[SEP]



Encoder: Animation



Decoder: Animation



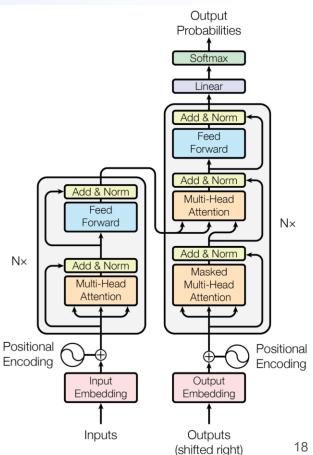
Transformer: Review

Attention is all you need (beyond RNN)

n: length of sequence

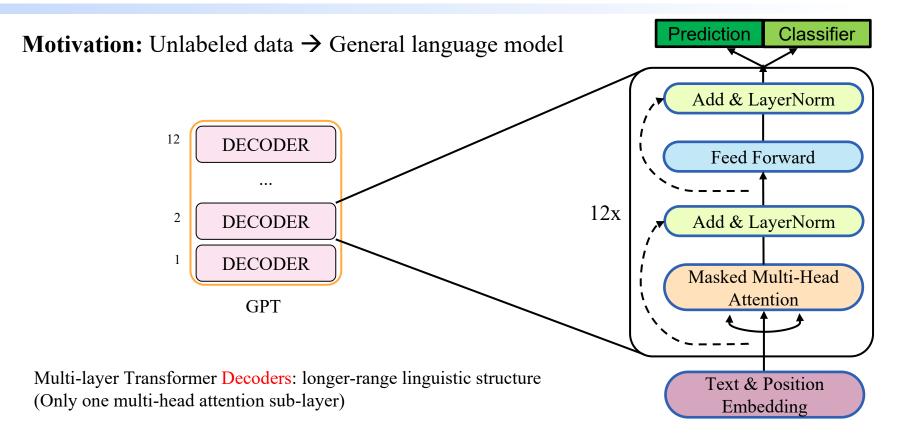
d: dimension of word embedding

Layer Type	Complexity/Layer	Sequential Operation	Maximum Path Length
Self-Attention	$0(n^2d)$	0(1)	0(1)
Recurrent	$0(nd^{2})$	0(<i>n</i>)	0(<i>n</i>)
Convolutional	0(knd)	0(1)	$O(log_k(n))$
Self-Attention (restricted)	0(<i>rnd</i>)	0(1)	0(n/r)



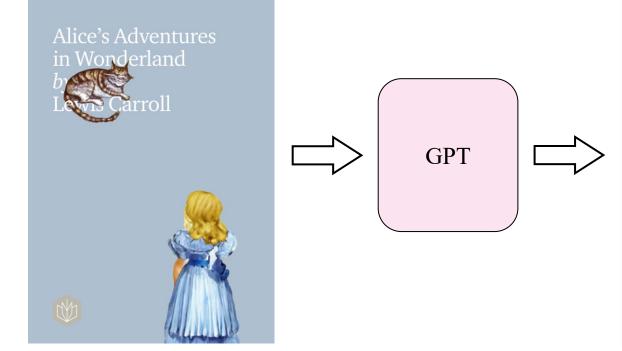
- Transformer
- GPT
- BERT

GPT: Generative Pre-Training*



*Radford, Alec, et al. "Improving language understanding by generative pre-training." (2018).

GPT Example: Summarization



A LICE falls down a rabbit hole and grows to giant size after drinking a mysterious bottle. She decides to focus on growing back to her normal size and finding her way into the garden. She meets the Caterpillar who tells her that one side of a mushroom will make her grow taller, the other side shorter. She eats the mushroom and returns to her normal size. Alice attends a party with the Mad Hatter and the March Hare. The Queen arrives and orders the execution of the gardeners for making a mistake with the roses. Alice saves them by putting them in a flowerpot. The King and Queen of Hearts preside over a trial. The Queen gets angry and orders Alice to be sentenced to death. Alice wakes up to find her sister by her side.

GPT: Pre-Training

Two stages semi-supervised training

• Unsupervised Language Modelling (pre-training)

$$L_1(\mathcal{U}) = \sum_i \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

I am good argmax $P(u_i | I, am; \Theta) = good$

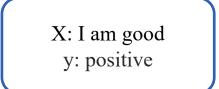
$$\begin{aligned} h_0 &= UW_e + W_p \\ h_l &= \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n] \\ P(u) &= \texttt{softmax}(h_n W_e^T) \end{aligned}$$

GPT: Fine-Tuning

Two stages semi-supervised training

• Supervised fine-tuning

$$P(y|x^1, \dots, x^m) = \texttt{softmax}(h_l^m W_y).$$
$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m).$$

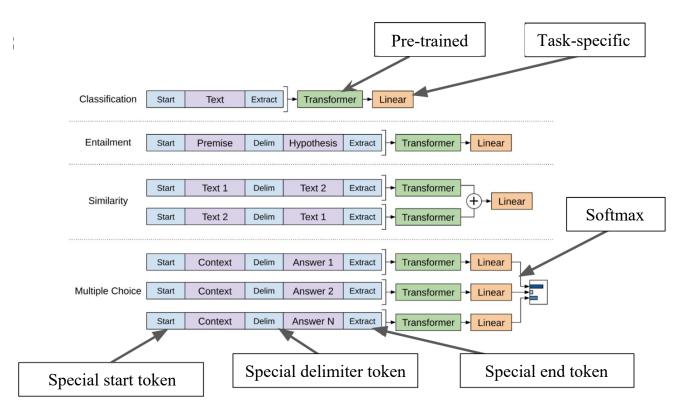


Including language modeling as an auxiliary objective

$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$

GPT: Task-Specific Input Transformations

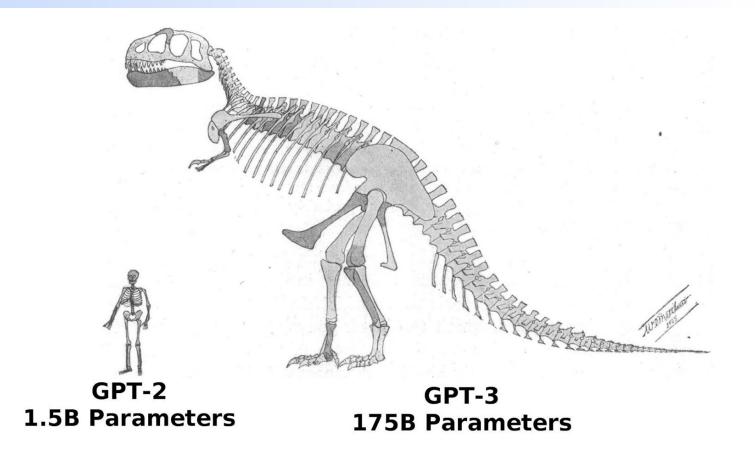
GPT is SOTA: achieves new state-of-the-art results in 9 out of the 12 datasets



GPT: Experiment & Results

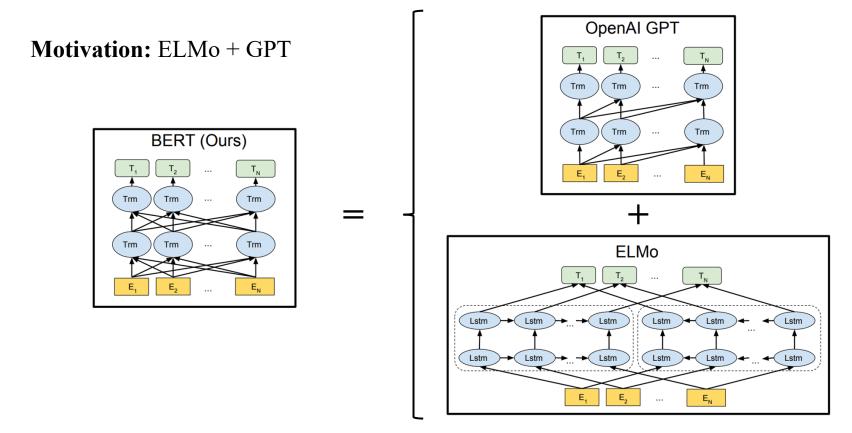
Zero-shot Behaviors 1.0 sentiment analysis winograd schema resolution linguistic acceptability 0.8 question answering Transformer Relative Task Performance 0 5 LSTM 0.2 0.0 + 10³ 10^{4} 10^{5} 10^{6} # of pre-training updates

GPT2 and GPT3

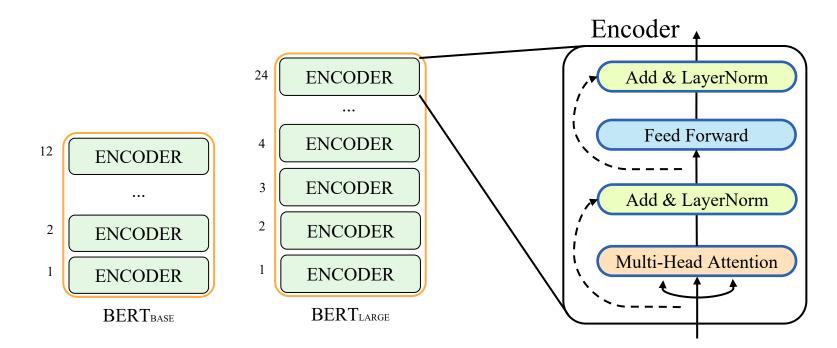


- Transformer
- GPT
- BERT

BERT: Bidirectional Encoder Representations from Transformers*



BERT: Bidirectional Encoder Representations from Transformers

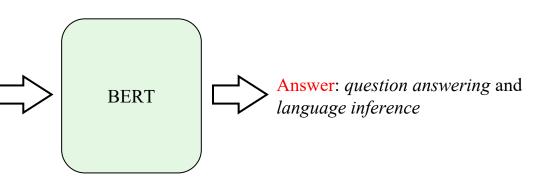


Multi-layer bidirectional Transformer Encoders (not masked)

BERT Example: Question Answering

Question = "What are some example applications of BERT?"

Passage = "...BERT model can be finetuned with just one additional output layer to create state-of-the-art [models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications."



Pre-Training Task #1: Masked LM (MLM)

Standard bidirectional conditioning would allow each word to indirectly "see itself" in a multi-layered context

 \rightarrow Masking 15% of the input tokens at random, then predicting only those masked tokens

$$L(\mathcal{U}) = \sum_{i \in I} \log P(u_i | u_{j \notin I}; \Theta)$$

Downside: Mismatch between pre-training and fine-tuning, since the [MASK] token is never seen during fine-tuning. My dog is hairy. \rightarrow choose hairy

- 80% of time: my dog is [MASK]
- 10% of time: my dog is apple
- 10% of time: my dog is hairy

Pre-Training Task #2: Next Sentence Prediction (NSP)

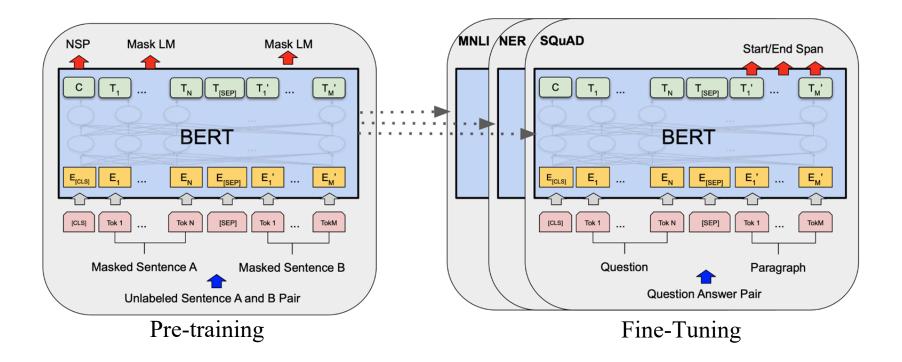
Question Answering / Natural Language Inference → Sentence relationships

Specifically, when choosing the sentence 1 and 2 for each pre-training example:

- 50% of time: 2 is the actual next sentence that follows 1
- 50% of time: 2 is a random sentence

Sentence 1	Sentence J	Next Sentence?	
I am going outside.	I will be back after 6.	YES	
I am going outside.	You know nothing John snow.	NO	

BERT: Bidirectional Encoder Representations from Transformers



BERT: Experiment & Results

Importance of both tasks

Tasks	MNLI-m (Acc)	QNLI (Acc)	MRPC (Acc)	SST-2 (Acc)	SQuAD (F1)
BERT _{BASE}	84.4	88.4	86.7	92.7	88.5
No NSP	83.9	84.9	86.5	92.6	87.9
LTR & No NSP	82.1	84.3	77.5	92.1	77.8
+ BiLSTM	82.1	84.1	75.7	91.6	84.9

Influence of hyperparameters

Hyper-parameters				Dev Set Accuracy			
#L	d _{model}	#H	LM (ppl)	MNL1-m	MRPC	SST-2	
3	768	12	5.84	77.9	79.8	88.4	
6	768	3	5.24	80.6	82.2	90.7	
6	768	12	4.68	81.9	84.8	91.3	
12	768	12	3.99	84.4	86.7	92.9	
12	1024	16	3.54	85.7	86.9	93.3	
24	1024	16	3.23	86.6	87.8	93.7	

BERT: Experiment & Results

BERT is SOTA

System	MNLI-(m/mm) 392k	QQP 363k	QNLI 108k	SST-2 67k	CoLA 8.5k	STS-B 5.7k	MRPC 3.5k	RTE 2.5k	Average -
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Comparison: GPT & BERT

Word Embedding

 $N_{vocab} \times d_{model}$

BERT Encoder

 $12Nd_{model} \times d_{model}$

GPT Decoder

 $12Nd_{model} \times d_{model}$

Model	Layer	dmodel	#parameter
BERTBASE	12	768	110M
BERTLARGE	24	1024	340M
GPT	12	768	110M
GPT2	48	1600	1542M
GPT3	96	12288	175B

Comparison: GPT & BERT

SuperGLUE Benchmark

Thank You!